X-ray light sensors for space have become much lighter


Before (top) and after 150 hours of annealing (bottom) at different length scales (left to right). It can be seen that the surface roughness measured using atomic force microscopy is significantly reduced over a wide range of length scales. Credit: Tokyo Metropolitan University

A team led by scientists at Tokyo Metropolitan University has created unprecedentedly lightweight optics for space X-ray telescopes, breaking the traditional trade-off between angular resolution and weight. They used Micro Electro-Mechanical System (MEMS) technology, creating intricate patterns in silicon wafers capable of directing and collecting X-rays. By annealing and polishing, they achieved ultra-sharp features that could rival with the performance of existing telescopes for a fraction of the weight, costing much less to launch.

X-ray astronomy is an essential tool that helps scientists study and classify the wide range of celestial bodies that emit and interact with X-rays, including our planet. But there’s a catch: Most X-rays are absorbed in our atmosphere, which means telescopes and detectors have to be launched into space. This comes with a whole host of limitations, especially the weight of the device.

One of the key characteristics of any astronomical observing optic is its angular resolution, or the angle that two light sources can make with a detector and still be individually identified. The problem with conventional X-ray optics is that to achieve higher resolutions the devices become increasingly heavy. This makes launching them into space very expensive. Even for the Hitomi telescope launched in 2016, considered revolutionary light, the effective weight was 600 kg per square meter of useful area.

X-ray light sensors for space have become much lighter

Concentric arrays of slits allow X-rays to enter and reflect off interior walls, pushing them so that they are directed at a single point. Credit: Tokyo Metropolitan University

Now, a team led by Associate Professor Yuichiro Ezoe and Aoto Fukushima has broken that compromise by designing a high-performance unit that weighs just 10kg per square meter. They used Micro Electro-Mechanical Systems (MEMS) technology, a technique designed to make microscopic mechanical actuators, to mold sharp and intricate designs into silicon wafers that can direct and collect X-rays. follows the Wolter I geometry of existing X-ray telescopes, a concentric array of tree-ring shaped slits that can push incoming X-rays through a narrow range of angles and collect them to a point.

Notably, the team refined the pattern itself. After etching the slits using a technique called deep reactive ion etching (DRIE), they found that there was a surface roughness to the patterns that could coat the X-ray collection, decreasing resolution. They annealed the pattern, applying heat in a special device for unprecedented lengths of time. With longer and longer annealing, the silicon atoms on the surface of the patterns were able to move more, rounding off any roughness and improving the angular resolution of the telescope. This was followed by grinding and chemical polishing to straighten the rounded edges of the slots themselves.

X-ray light sensors for space have become much lighter

The GEO-X mission aims to observe the Earth’s magnetosphere using cosmic X-rays. It will weigh only 50 kg. Credit: Tokyo Metropolitan University

Importantly, the performance reported by the team matches that of telescopes that are already in action. Its weight makes it particularly suitable for the GEO-X mission, a satellite designed to visualize the Earth’s magnetosphere. The team is aiming for the incredibly low overall weight of 50kg, a technological breakthrough that could see future missions sent into orbit at incomparably lower costs.

The results of their research are published in Express Optics.

Radically different telescope design offers a deeper look into space

More information:
Aoto Fukushima et al, Improving imaging performance of silicon micropore X-ray optics by ultra-long-term annealing, Express Optics (2022). DOI: 10.1364/OE.459774

Provided by Tokyo Metropolitan University

Quote: X-ray light catchers for space have gotten much lighter (2022, July 18) Retrieved July 18, 2022 from https://phys.org/news/2022-07-x-ray-catchers-space -lot-lighter.html

This document is subject to copyright. Except for fair use for purposes of private study or research, no part may be reproduced without written permission. The content is provided for information only.

Source link


Comments are closed.